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Abstract
It is well known that a Sturmian sequence can be regarded as a rotation sequence
or a balanced sequence. In this paper, by a rotation sequence, we first construct
a series of sequences with complexity kn + 1, then, from these sequences, we
reconstruct other Sturmian sequences and discuss their relationships.

PACS numbers: 02.10.Ox, 02.70.Wz, 45.30.+s, 89.20.Ff
Mathematics Subject Classification: 68R15, 37B10, 11B85, 68Q45

1. Introduction

A coarse-grained description of a dynamical system can be represented by an infinite
symbolic sequence (the dynamical system concerned here is an iterative system generated
by a continuous map from a compact topological space into itself ), see [14]. The symbolic
sequences obtained in this way, as the simplest dynamics with respect to the shift operator,
fits well the framework of formal language. Therefore, symbolic sequences may be studied
from the viewpoint of language and grammar complexity. Given an infinite sequence F,
its language complexity p(n, F ) is defined to be the number of its factors of length n,
which has been extensively studied in the last few years, e.g. [21]. From the definition it
is easily seen that F is periodic if p(n, F ) is bounded. For the sequence F, a rich and
instructive task is to compute its complexity function p(n, F ); however, it is generally not
easily accessible when F is aperiodic. So Sturmian sequences, the aperiodic infinite symbolic
sequences with minimal language complexity (p(n, F ) = n + 1), have attracted a lot of
attention in many fields of mathematics, physics and biology [3, 21]. After the discovery
of quasicrystals Sturmian dynamical systems became particularly attractive to mathematical
physicists [1, 7, 12, 16, 17, 24, 25], as they can serve as simple models for one-dimensional
quasicrystals. So the study of Sturmian sequences plays an important role in the study of
quasicrystal structure. Sturmian sequences admit various equivalent definitions in different
manners such as rotation sequences, cutting sequences, Christoffel words, balanced sequences,
and so on.
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This paper is motivated by the following idea: since a numerical orbit in a dynamical
system can be reduced to a symbolic sequence, could we reduce a symbolic sequence with a
higher language complexity to one of lower language complexity through some coarse-grained
processes? In this paper we shall give a positive answer to this question. We first review, in the
next section, the terminology on rotation sequences, based on which we construct a class of
sequences Fk with p(n, Fk) = kn + 1 (k = 1, 2, . . .) from a Sturmian sequence. In section 3,
performing a coarse-grained description for Fk , we get other Sturmian sequences, and discuss
their relations.

2. From a Sturmian sequence to Fk with p(n, Fk) = kn + 1

Before starting our discussion we briefly review the terminology on words. Let A =
{l1, l2, . . . , lk} be an alphabet with k letters. A finite (infinite) string w is called a word
(sequence) if w = w1w2 · · · wn(w = w1w2 · · ·wn · · ·) with wi ∈ A. We denote by A∗ the
set of all words over A. If w = uv is the concatenation of two words u = u1u2 · · · ur ,
v = v1v2 · · · vs , then w is defined as u1u2 · · · urv1v2 · · · vs . We denote by un the concatenation
of n copies of u. The concatenation of a word and a sequence can be defined similarly. Let
w = w1w2 · · · wn. We call n the length of w denoted by |w|. A word u is called a factor (resp.
a prefix, resp. a suffix) of a word w if there exist words x, y such that w = xuy (resp. w = uy.
resp. w = xu). In this case, we say (|x|, u) is an occurrence of u in w. The factor (resp. a
prefix, resp. a suffix) is proper if xy �= ε (resp. y �= ε. resp. x �= ε), where ε is the empty
word. The language of length n of a sequence F, denoted by �n(F ), is the set of all factors
of F of length n. �(F) = ∪n�0�n(F ) is the set of all factors of F. The complexity function
of F is defined as p(n, F ) = #�n(F ). A sequence F is called Sturmian if p(n, F ) = n + 1.
Throughout this paper, we assume A = {a, b}, an alphabet with two letters.

We now review the rotation sequences. Let T = [0, 1). Consider a map from T into itself
f : T → T defined by

f (x) = x + α (mod 1),

where x is a real number and α is an irrational number. The iteration f n : T → T is defined
inductively by f 0(x) = x, f n+1(x) = f (f n(x)). It is clear that f n(x) �= x for all n > 0.
Starting the initial point x0 = β, we have a numerical orbit

x0, x1, . . . , xn, . . . (1)

by iterating the map: x1 = f (x0) and xn = f (xn−1) for n > 1. Considering two intervals
I0 = [0, α) and I1 = [α, 1) on T, we denote by µα the coding function defined by

µα(x) =
{
a if x ∈ I0

b if x ∈ I1.

Then a coarse-grained description of the numerical orbit is realized by the following symbolic
sequence:

µα(x0), µα(x1), . . . , µα(xn), . . . . (2)

We call this sequence, denoted by Fα,β , a rotation sequence defined by α and β. From [22]
we get that rotation sequences and Sturmian sequences are equivalent. We state this result as
follows:

Theorem 2.1 [22]. Every rotation sequence is a Sturmian sequence. Conversely, for each
Sturmian sequence there are real numbers α and β such that Fα,β is just that Sturmian
sequence.
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Let α be an irrational number and β be a real number and let

Fα,β = u0u1 · · · un . . . , where ui ∈ {a, b}.
From theorem 2.1 we know that p(n, Fα,β) = n + 1. Let Sk = {s1, s2, . . . , sk+1} denote the set
of factors of Fα,β of length k. Then Fα,β can be written as the product of the elements in Sk ,
denoted by Fk = v0v1 · · · vn · · ·, where vi ∈ Sk .

Theorem 2.2. The complexity function of Fk on Sk is p(n, Fk) = kn + 1.

To prove this theorem, we first give a few lemmas.

Lemma 2.3 [13]. A Sturmian sequence is recurrent, that is, every word that occurs in the
sequence occurs an infinite number of times.

According to the fact that irrational rotations of a circle are minimal as topological dynamical
systems, we have the following lemma:

Lemma 2.4 [27]. Let α be an irrational number and (p, q) ⊂ [0, 1) with p < q. Then there
exists an integer n > 0 such that x = nα (mod 1) ∈ (p, q).

Lemma 2.5. Let k be a fixed positive integer, Fα,β = u0u1 · · · un . . . , w
(k)
i = uikuik+1 · · ·

u(i+1)k−1 for i � 0 and let S ′
k denote the set of distinct w

(k)
i . Then S ′

k = Sk , and therefore
|S ′

k| = k + 1.

Proof. It is clear that S ′
k ⊆ Sk . Now we prove that Sk ⊆ S ′

k . Suppose t = t1t2 · · · tk ∈ Sk ,
where ti ∈ A. We have known that Fα,β is generated by the numerical orbit x0x1 · · · xn · · ·,
where x1 = f (x0) and xn = f (xn−1) for n > 1. By theorem 2.1, there exists m � 0 such that
ti = µα(xm+i−1) and min{|xi |, |xi − α|, |xi−1|} > 0 for 0 < i < k + 1 since f n(x) �= x for any
n. Let y = min{|xi |, |xi −α|, |xi −1| with 0 < i < k +1}. From lemma 2.4, there exists j > 0
such that xjk = jkα (mod 1) ∈ (xm − y, xm + y) ⊂ [0, 1). Then we get that ti = µα(xjk+i−1)

for 0 < i < k + 1, which implies that t = t1t2 · · · tk = xjkxjk+1 · · · x(j+1)k−1 = w
(k)
j ∈ S ′

k ,
which implies that |S ′

k| = |Sk| = k + 1. �

Proof of theorem 2.2. Write Fk = w
(k)
0 w

(k)
1 · · ·w(k)

n · · ·, where w
(k)
i ∈ Sk . We need to prove

p(n, Fk) = kn + 1 on Sk . Since p(kn, Fα,β) = kn + 1, we have that p(n, Fk) � kn + 1. Then
we need only to prove that p(n, Fk) � kn + 1. Let Fk(n) be the set of all distinct factors
of length n of the sequence Fk on Sk . For any t ∈ S ′

kn, there exists j such that t = w
(kn)
j .

According to lemma 2.5, it is clear that w
(kn)
j = w

(k)
nj w

(k)
nj+1 · · · w(k)

nj+n−1 ∈ Fk(n), which implies
that p(n, Fk) = |Fk(n)| � |S ′

kn| = kn + 1. �

Example. Let F be the Fibonacci sequence, which can be generated by following: F(0) = a,
F(−1) = b, F (n) = F(n − 1)F (n − 2), so

F = F(∞) = abaababaabaababaababaabaababaabaababaababaabaababaababa · · · .
It is a well-known example of Sturmian sequences [21].

Let πk : Sk −→ [k + 1] be a one-to-one mapping, where [k + 1] = {0, 1, . . . , k}. We
define πk(F ) = πk

(
w

(k)
0

)
πk

(
w

(k)
1

) · · · πk

(
w(k)

n

) · · ·. So we get that Fk = πk(F ) on [k + 1].
Then we have

F2 = 0122012200120012001220122001200120012201220122 · · ·
F3 = 0011230001123000123300012330001233001123300112 · · ·
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F4 = 0101232323423040401010123234343404010101232323 · · ·
F5 = 0011234445500112344455001123344550011233445500 · · ·
F6 = 0120345036032504601253450120345046032504601253 · · · .

3. From Fk to Sturmian sequences

Now, we construct a series of Sturmian sequences from Fk . We first recall another equivalent
definition of Sturmian sequences, that is, balanced sequences.

If U is a finite word over the alphabet A, we denote |U |a the number of occurrences
of the letter a in U. We say U is even if |U |a is even, otherwise U is odd. A sequence u
over A is balanced if, for any pair of words U,V of the same length occurring in u, we have
||U |a − |V |a| � 1. Reference [22] says that balanced sequences and Sturmian sequences are
equivalent.

Theorem 3.1 [22]. A sequence u is Sturmian if and only if it is a noneventually periodic
balanced sequence over two letters.

From theorem 3.1 we know that for any pair of words U and V , which are two factors
of a Sturmian sequence, we have |U |a = |V |a if U and V have the same length and parity;
otherwise, ||U |a − |V |a| = 1. Let Fα,β = u0u1 · · · un · · · be a Sturmian sequence and
Fk = v0v1 · · · vn · · · denote the sequence on Sk . Let δ : Sk −→ {a, b} defined as: for any
v ∈ Sk, δ(v) = a if v is even, otherwise δ(v) = b. Then we have the following theorem:

Theorem 3.2. Let F ′
k = δ(Fk) = δ(v0)δ(v1) · · · δ(vn) · · ·. Then F ′

k is a Sturmian sequence.

Proof. Assume that F ′
k is not Sturmian. From theorem 3.1 it follows that there exist two

factors U ′ and V ′ of F ′
k with the same length m, such that ||U ′|a −|V ′|a| > 1. Let ne (resp. no)

denote the number of a occurring in v ∈ Sk with v being even (resp. odd). It is not difficult
to find that |ne − no| = 1. Since F ′

k = δ(Fk), there exist two factors U,V of Fk such that
δ(U) = U ′ and δ(V ) = V ′. Then we have

||U |a − |V |a| = |(ne|U ′|a + no(|U ′| − |U ′|a)) − (ne|V ′|a + no(|V ′| − |V ′|a))|
= |ne(|U ′|a − |V ′|a) + no(|U ′| − |U ′|a − |V ′| + |V ′|a)|
= |ne(|U ′|a − |V ′|a) − no(|U ′|a − |V ′|a)|
= |(ne − no)(|U ′|a − |V ′|a)|
= ||U ′|a − |V ′|a| > 1,

which contradicts that Fα,β is a Sturmian sequence. �

Example. Let F be the Fibonacci sequence. By theorem 3.2 we obtain a series of Sturmian
sequences as follows:

F ′
2 = babbbabbbbabbbabbbabbbabbbbabbbabbbabbbabbbabbbbabbbabbbab

bbabbbbabbbabbbabbbabbbbabbbabbbabbbabbbbabbbabbbabbbabbb

abbbbabbbabbbabbbabbbbabbbabbbabbbabbbbabbbab · · · ;
F ′

3 = aaaabaaaaaabaaaaabaaaaaabaaaaaabaaaaaabaaaaaabaaaaaa

baaaaaabaaaaabaaaaaabaaaaaabaaaaaabaaaaaabaaaaaabaaaaaa

baaaaabaaaaaabaaaaaabaaaaaabaaaaaabaaaaaabaaaaaabaaaa · · · ;
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F ′
4 = babaabababababababababaababababababababaabababababababa

babaababababababababaababababababababaababababababababa

baababababababababaabababababababababaabababababab · · · ;
F ′

5 = bbbbabbbbbbbbbbabbbbbbbbbbabbbbbbbbbbabbbbbbbbbbabbbbbbbbbbab

bbbbbbbbbabbbbbbbbbbabbbbbbbbbbabbbbbbbbbbbabbbbbbbbbbabbbbbb

bbbbabbbbbbbbbbabbbbbbbbbbabbbbbbbbbbabbbbbbbbbbabbbbbbbbbbab

bbbbbbbbbabbbbbbbb · · · ;
F ′

6 = aabaabaabaaabaabaaabaabaaabaabaabaaabaabaaabaabaaabaab

aabaaabaabaaabaabaaabaabaabaaabaabaaabaabaaabaabaabaaa

baabaaabaabaaabaabaabaaabaabaaabaabaaabaabaabaaabaab · · · .
Now, we consider the relationship of Fα,β and F ′

k . We have the following theorem.

Theorem 3.3. F ′
k = Fαk,βk

, where βk = β + (k − 1)α (mod 1) and αk = kα (mod 1).

We first prove two lemmas. Let Fα,β = µα(x0)µα(x1) · · · µα(xn) · · ·, where x0 = β

and xn = f (xn−1) for n � 1. I k
0 = [0, αk) and I k

1 = [αk, 1) are two intervals on T.
Let �k(xi) = µα(xi−k+1)µα(xi−k+2) · · · µα(xi) for i � k − 1. It is clear that �k+t (xi) =
�k(xi−t )�t (xi).

Lemma 3.4. If xi ∈ I k
0 and xj ∈ I k

1 , then �k(xi) and �k(xj ) have different parities.

Proof. We apply induction on k. When k = 1, the lemma is trivially satisfied. Now assume
it is correct for k = n. Without loss of generality, we assume that �n(x) is odd if x ∈ I n

0 ;
otherwise �n(x) is even. Then we prove that the lemma is correct for k = n + 1.

Suppose α > 1/2. Then α > α2. There are three cases to be considered.

Case 1. αn+1 < α2. Then we have αn < α. If x ∈ [0, αn+1) = I n+1
0 , then x − α(mod 1) ∈

[1−α, αn) ⊂ I n
0 . So �n(x−α(mod 1)) is odd and �n+1(x) = �n(x−α(mod 1))�1(x) is even.

If x ∈ [αn+1, α), then x − α(mod 1) ∈ [αn, 1) ⊂ I n
1 , which implies that �n(x − α(mod 1))

is even and �n+1(x) = �n(x − α(mod 1))�1(x) is odd. When x ∈ [α, 1), it is clear that
x − α(mod 1) ∈ [0, 1 − α), which leads that �n(x − α(mod 1)) is odd and �1(x) is even. So
�n+1(x) is odd. Then we have �n+1(x) is odd if x ∈ I n+1

1 .

Case 2. α > αn+1 > α2. Then α < αn < 1 and we have

x − α(mod 1) ∈



[1 − α, αn) if x ∈ [0, αn+1),

[αn, 1) if x ∈ [αn+1, α),

[0, 1 − α) if x ∈ [α, 1),

from which it follows that �n+1(x) is even if x ∈ I n+1
0 ; otherwise �n+1(x) is odd.

Case 3. αn+1 > α. Then have 0 < αn < 1 − α and

x − α(mod 1) ∈



[1 − α, 1) if x ∈ [0, α),

[0, αn) if x ∈ [α, αn),

[αn, 1 − α) if x ∈ [αn+1, 1),

which implies that �n+1(x) is odd if x ∈ I n+1
0 ; otherwise �n+1(x) is even. Then the lemma is

correct for α > 1/2.
When α < 1/2, the proof is similar to the case of α > 1/2, we omit it.
The proof is complete. �
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Lemma 3.5. We have that xi and xj are in same interval of I k
0 and I k

1 if �k(xi) and �k(xj )

have same parity; otherwise, xi and xj are in different intervals.

Proof. From lemma 3.4, it is not difficult to prove that �k(xi) and �k(xj ) have same parities
if and only if xi and xj are in the same interval, which implies, by reduction to absurdity, that
xi and xj are in different intervals if �k(xi) and �k(xj ) have different parity. The proof is
complete. �

Proof of theorem 3.3. Let βk = x0 + (k − 1)α (mod 1). Then we have Fαk,βk
=

µαk
(xk−1)µαk

(x2k−1) · · · µαk
(xnk−1) · · ·. From lemmas 3.4 and 3.5, we conclude that F ′

k =
Fαk,βk

. �

Remark 3.6. There is much current research on discrete one-dimensional Schrödinger
operators in �2(Z) with Sturmian potentials, namely,

(Hλ,α,βu)(n) = u(n + 1) + u(n − 1) + λFα,βu(n), (3)

where α ∈ (0, 1) is irrational, β ∈ [0, 1) and λ �= 0, along with the corresponding difference
equation

Hλ,α,βu = Eu. (4)

The operator family (3) describes a standard one-dimensional quasicrystal model [20, 24]
and has been studied in many papers [1, 2, 6–9, 15, 17, 18, 23]. From (3) it is seen that
different Sturmian sequences determine different Schrödinger operators. Therefore, to know
the relationship of the structures of quasicrystals described by Schrödinger operators it is
essential for us to know the relationship of different Sturmian sequences. From theorem 3.2
we know that by a Sturmian sequence Fα,β we can construct a series of Sturmian sequences
Fαk,βk

where k is a positive integer and αk, βk are given in theorem 3.3. Moreover, following
the construction process given in sections 2 and 3, by Fα,β we can write the sequence Fαk,βk

term by term. Hence, from Hλ,α,βu we can immediately obtain Hλ,αk,βk
u.

4. Conclusion

In this paper, we use a Sturmian sequence to form a series of sequences with higher language
complexity, by which we then construct other Sturmian sequences. This progress answers
a question: a sequence with higher language complexity can be reduced to a sequence with
lower language complexity by some coarse-grained methods. These results can be applied to
the study of quasicrystal structure as pointed in remark 3.6.
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