Construction of Sturmian sequences

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys. A: Math. Gen. 382891
(http://iopscience.iop.org/0305-4470/38/13/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.66
The article was downloaded on 02/06/2010 at 20:06

Please note that terms and conditions apply.

Construction of Sturmian sequences

KeBo Lü and Jun Wang
Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, People's Republic of China
E-mail: kebo_lv@yahoo.com.cn and junwang@dlut.edu.cn

Received 4 June 2004, in final form 17 January 2005
Published 14 March 2005
Online at stacks.iop.org/JPhysA/38/2891

Abstract

It is well known that a Sturmian sequence can be regarded as a rotation sequence or a balanced sequence. In this paper, by a rotation sequence, we first construct a series of sequences with complexity $k n+1$, then, from these sequences, we reconstruct other Sturmian sequences and discuss their relationships.

PACS numbers: $02.10 . \mathrm{Ox}, 02.70 . \mathrm{Wz}, 45.30 .+\mathrm{s}, 89.20 . \mathrm{Ff}$ Mathematics Subject Classification: 68R15, 37B10, 11B85, 68Q45

1. Introduction

A coarse-grained description of a dynamical system can be represented by an infinite symbolic sequence (the dynamical system concerned here is an iterative system generated by a continuous map from a compact topological space into itself), see [14]. The symbolic sequences obtained in this way, as the simplest dynamics with respect to the shift operator, fits well the framework of formal language. Therefore, symbolic sequences may be studied from the viewpoint of language and grammar complexity. Given an infinite sequence F, its language complexity $p(n, F)$ is defined to be the number of its factors of length n, which has been extensively studied in the last few years, e.g. [21]. From the definition it is easily seen that F is periodic if $p(n, F)$ is bounded. For the sequence F, a rich and instructive task is to compute its complexity function $p(n, F)$; however, it is generally not easily accessible when F is aperiodic. So Sturmian sequences, the aperiodic infinite symbolic sequences with minimal language complexity $(p(n, F)=n+1)$, have attracted a lot of attention in many fields of mathematics, physics and biology [3, 21]. After the discovery of quasicrystals Sturmian dynamical systems became particularly attractive to mathematical physicists [1, 7, 12, 16, 17, 24, 25], as they can serve as simple models for one-dimensional quasicrystals. So the study of Sturmian sequences plays an important role in the study of quasicrystal structure. Sturmian sequences admit various equivalent definitions in different manners such as rotation sequences, cutting sequences, Christoffel words, balanced sequences, and so on.

This paper is motivated by the following idea: since a numerical orbit in a dynamical system can be reduced to a symbolic sequence, could we reduce a symbolic sequence with a higher language complexity to one of lower language complexity through some coarse-grained processes? In this paper we shall give a positive answer to this question. We first review, in the next section, the terminology on rotation sequences, based on which we construct a class of sequences F_{k} with $p\left(n, F_{k}\right)=k n+1(k=1,2, \ldots)$ from a Sturmian sequence. In section 3 , performing a coarse-grained description for F_{k}, we get other Sturmian sequences, and discuss their relations.

2. From a Sturmian sequence to F_{k} with $p\left(n, F_{k}\right)=k n+1$

Before starting our discussion we briefly review the terminology on words. Let $A=$ $\left\{l_{1}, l_{2}, \ldots, l_{k}\right\}$ be an alphabet with k letters. A finite (infinite) string w is called a word (sequence) if $w=w_{1} w_{2} \cdots w_{n}\left(w=w_{1} w_{2} \cdots w_{n} \cdots\right)$ with $w_{i} \in A$. We denote by A^{*} the set of all words over A. If $w=u v$ is the concatenation of two words $u=u_{1} u_{2} \cdots u_{r}$, $v=v_{1} v_{2} \cdots v_{s}$, then w is defined as $u_{1} u_{2} \cdots u_{r} v_{1} v_{2} \cdots v_{s}$. We denote by u^{n} the concatenation of n copies of u. The concatenation of a word and a sequence can be defined similarly. Let $w=w_{1} w_{2} \cdots w_{n}$. We call n the length of w denoted by $|w|$. A word u is called a factor (resp. a prefix, resp. a suffix) of a word w if there exist words x, y such that $w=x u y$ (resp. $w=u y$. resp. $w=x u$). In this case, we say $(|x|, u)$ is an occurrence of u in w. The factor (resp. a prefix, resp. a suffix) is proper if $x y \neq \varepsilon$ (resp. $y \neq \varepsilon$. resp. $x \neq \varepsilon$), where ε is the empty word. The language of length n of a sequence F, denoted by $\Omega_{n}(F)$, is the set of all factors of F of length n. $\Omega(F)=\cup_{n \geqslant 0} \Omega_{n}(F)$ is the set of all factors of F. The complexity function of F is defined as $p(n, F)=\# \Omega_{n}(F)$. A sequence F is called Sturmian if $p(n, F)=n+1$. Throughout this paper, we assume $A=\{a, b\}$, an alphabet with two letters.

We now review the rotation sequences. Let $T=[0,1)$. Consider a map from T into itself $f: T \rightarrow T$ defined by

$$
f(x)=x+\alpha(\bmod 1)
$$

where x is a real number and α is an irrational number. The iteration $f^{n}: T \rightarrow T$ is defined inductively by $f^{0}(x)=x, f^{n+1}(x)=f\left(f^{n}(x)\right)$. It is clear that $f^{n}(x) \neq x$ for all $n>0$. Starting the initial point $x_{0}=\beta$, we have a numerical orbit

$$
\begin{equation*}
x_{0}, x_{1}, \ldots, x_{n}, \ldots \tag{1}
\end{equation*}
$$

by iterating the map: $x_{1}=f\left(x_{0}\right)$ and $x_{n}=f\left(x_{n-1}\right)$ for $n>1$. Considering two intervals $I_{0}=[0, \alpha)$ and $I_{1}=[\alpha, 1)$ on T, we denote by μ_{α} the coding function defined by

$$
\mu_{\alpha}(x)=\left\{\begin{array}{lll}
a & \text { if } & x \in I_{0} \\
b & \text { if } & x \in I_{1}
\end{array}\right.
$$

Then a coarse-grained description of the numerical orbit is realized by the following symbolic sequence:

$$
\begin{equation*}
\mu_{\alpha}\left(x_{0}\right), \mu_{\alpha}\left(x_{1}\right), \ldots, \mu_{\alpha}\left(x_{n}\right), \ldots \tag{2}
\end{equation*}
$$

We call this sequence, denoted by $F_{\alpha, \beta}$, a rotation sequence defined by α and β. From [22] we get that rotation sequences and Sturmian sequences are equivalent. We state this result as follows:

Theorem 2.1 [22]. Every rotation sequence is a Sturmian sequence. Conversely, for each Sturmian sequence there are real numbers α and β such that $F_{\alpha, \beta}$ is just that Sturmian sequence.

Let α be an irrational number and β be a real number and let

$$
F_{\alpha, \beta}=u_{0} u_{1} \cdots u_{n} \ldots, \quad \text { where } \quad u_{i} \in\{a, b\}
$$

From theorem 2.1 we know that $p\left(n, F_{\alpha, \beta}\right)=n+1$. Let $S_{k}=\left\{s_{1}, s_{2}, \ldots, s_{k+1}\right\}$ denote the set of factors of $F_{\alpha, \beta}$ of length k. Then $F_{\alpha, \beta}$ can be written as the product of the elements in S_{k}, denoted by $F_{k}=v_{0} v_{1} \cdots v_{n} \cdots$, where $v_{i} \in S_{k}$.

Theorem 2.2. The complexity function of F_{k} on S_{k} is $p\left(n, F_{k}\right)=k n+1$.
To prove this theorem, we first give a few lemmas.
Lemma 2.3 [13]. A Sturmian sequence is recurrent, that is, every word that occurs in the sequence occurs an infinite number of times.

According to the fact that irrational rotations of a circle are minimal as topological dynamical systems, we have the following lemma:

Lemma 2.4 [27]. Let α be an irrational number and $(p, q) \subset[0,1)$ with $p<q$. Then there exists an integer $n>0$ such that $x=n \alpha(\bmod 1) \in(p, q)$.
Lemma 2.5. Let k be a fixed positive integer, $F_{\alpha, \beta}=u_{0} u_{1} \cdots u_{n} \ldots, w_{i}^{(k)}=u_{i k} u_{i k+1} \ldots$ $u_{(i+1) k-1}$ for $i \geqslant 0$ and let S_{k}^{\prime} denote the set of distinct $w_{i}^{(k)}$. Then $S_{k}^{\prime}=S_{k}$, and therefore $\left|S_{k}^{\prime}\right|=k+1$.

Proof. It is clear that $S_{k}^{\prime} \subseteq S_{k}$. Now we prove that $S_{k} \subseteq S_{k}^{\prime}$. Suppose $t=t_{1} t_{2} \cdots t_{k} \in S_{k}$, where $t_{i} \in A$. We have known that $F_{\alpha, \beta}$ is generated by the numerical orbit $x_{0} x_{1} \cdots x_{n} \cdots$, where $x_{1}=f\left(x_{0}\right)$ and $x_{n}=f\left(x_{n-1}\right)$ for $n>1$. By theorem 2.1, there exists $m \geqslant 0$ such that $t_{i}=\mu_{\alpha}\left(x_{m+i-1}\right)$ and $\min \left\{\left|x_{i}\right|,\left|x_{i}-\alpha\right|,\left|x_{i}-1\right|\right\}>0$ for $0<i<k+1$ since $f^{n}(x) \neq x$ for any n. Let $y=\min \left\{\left|x_{i}\right|,\left|x_{i}-\alpha\right|,\left|x_{i}-1\right|\right.$ with $\left.0<i<k+1\right\}$. From lemma 2.4, there exists $j>0$ such that $x_{j k}=j k \alpha(\bmod 1) \in\left(x_{m}-y, x_{m}+y\right) \subset[0,1)$. Then we get that $t_{i}=\mu_{\alpha}\left(x_{j k+i-1}\right)$ for $0<i<k+1$, which implies that $t=t_{1} t_{2} \cdots t_{k}=x_{j k} x_{j k+1} \cdots x_{(j+1) k-1}=w_{j}^{(k)} \in S_{k}^{\prime}$, which implies that $\left|S_{k}^{\prime}\right|=\left|S_{k}\right|=k+1$.

Proof of theorem 2.2. Write $F_{k}=w_{0}^{(k)} w_{1}^{(k)} \cdots w_{n}^{(k)} \cdots$, where $w_{i}^{(k)} \in S_{k}$. We need to prove $p\left(n, F_{k}\right)=k n+1$ on S_{k}. Since $p\left(k n, F_{\alpha, \beta}\right)=k n+1$, we have that $p\left(n, F_{k}\right) \leqslant k n+1$. Then we need only to prove that $p\left(n, F_{k}\right) \geqslant k n+1$. Let $F_{k}(n)$ be the set of all distinct factors of length n of the sequence F_{k} on S_{k}. For any $t \in S_{k n}^{\prime}$, there exists j such that $t=w_{j}^{(k n)}$. According to lemma 2.5, it is clear that $w_{j}^{(k n)}=w_{n j}^{(k)} w_{n j+1}^{(k)} \cdots w_{n j+n-1}^{(k)} \in F_{k}(n)$, which implies that $p\left(n, F_{k}\right)=\left|F_{k}(n)\right| \geqslant\left|S_{k n}^{\prime}\right|=k n+1$.

Example. Let F be the Fibonacci sequence, which can be generated by following: $F(0)=a$, $F(-1)=b, F(n)=F(n-1) F(n-2)$, so
$F=F(\infty)=$ abaababaabaababaababaabaababaabaababaababaabaababaababa \cdots.
It is a well-known example of Sturmian sequences [21].
Let $\pi_{k}: S_{k} \longrightarrow[k+1]$ be a one-to-one mapping, where $[k+1]=\{0,1, \ldots, k\}$. We define $\pi_{k}(F)=\pi_{k}\left(w_{0}^{(k)}\right) \pi_{k}\left(w_{1}^{(k)}\right) \cdots \pi_{k}\left(w_{n}^{(k)}\right) \cdots$. So we get that $F_{k}=\pi_{k}(F)$ on $[k+1]$. Then we have

$$
\begin{aligned}
& F_{2}=0122012200120012001220122001200120012201220122 \cdots \\
& F_{3}=0011230001123000123300012330001233001123300112 \cdots
\end{aligned}
$$

$$
\begin{aligned}
& F_{4}=0101232323423040401010123234343404010101232323 \cdots \\
& F_{5}=0011234445500112344455001123344550011233445500 \cdots \\
& F_{6}=0120345036032504601253450120345046032504601253 \cdots
\end{aligned}
$$

3. From \boldsymbol{F}_{k} to Sturmian sequences

Now, we construct a series of Sturmian sequences from F_{k}. We first recall another equivalent definition of Sturmian sequences, that is, balanced sequences.

If U is a finite word over the alphabet A, we denote $|U|_{a}$ the number of occurrences of the letter a in U. We say U is even if $|U|_{a}$ is even, otherwise U is odd. A sequence u over A is balanced if, for any pair of words U, V of the same length occurring in u, we have $\left||U|_{a}-|V|_{a}\right| \leqslant 1$. Reference [22] says that balanced sequences and Sturmian sequences are equivalent.

Theorem 3.1 [22]. A sequence u is Sturmian if and only if it is a noneventually periodic balanced sequence over two letters.

From theorem 3.1 we know that for any pair of words U and V, which are two factors of a Sturmian sequence, we have $|U|_{a}=|V|_{a}$ if U and V have the same length and parity; otherwise, $\left||U|_{a}-|V|_{a}\right|=1$. Let $F_{\alpha, \beta}=u_{0} u_{1} \cdots u_{n} \cdots$ be a Sturmian sequence and $F_{k}=v_{0} v_{1} \cdots v_{n} \cdots$ denote the sequence on S_{k}. Let $\delta: S_{k} \longrightarrow\{a, b\}$ defined as: for any $v \in S_{k}, \delta(v)=a$ if v is even, otherwise $\delta(v)=b$. Then we have the following theorem:

Theorem 3.2. Let $F_{k}^{\prime}=\delta\left(F_{k}\right)=\delta\left(v_{0}\right) \delta\left(v_{1}\right) \cdots \delta\left(v_{n}\right) \cdots$. Then F_{k}^{\prime} is a Sturmian sequence.
Proof. Assume that F_{k}^{\prime} is not Sturmian. From theorem 3.1 it follows that there exist two factors U^{\prime} and V^{\prime} of F_{k}^{\prime} with the same length m, such that $\left|\left|U^{\prime}\right|_{a}-\left|V^{\prime}\right|_{a}\right|>1$. Let n_{e} (resp. n_{o}) denote the number of a occurring in $v \in S_{k}$ with v being even (resp. odd). It is not difficult to find that $\left|n_{\mathrm{e}}-n_{\mathrm{o}}\right|=1$. Since $F_{k}^{\prime}=\delta\left(F_{k}\right)$, there exist two factors U, V of F_{k} such that $\delta(U)=U^{\prime}$ and $\delta(V)=V^{\prime}$. Then we have
which contradicts that $F_{\alpha, \beta}$ is a Sturmian sequence.
Example. Let F be the Fibonacci sequence. By theorem 3.2 we obtain a series of Sturmian sequences as follows:
$F_{2}^{\prime}=$ babbbabbbbabbbabbbabbbabbbbabbbabbbabbbabbbabbbbabbbabbbab
bbabbbbabbbabbbabbbabbbbabbbabbbabbbabbbbabbbabbbabbbabbb
abbbbabbbbabbbabbbabbbbabbbabbbabbbabbbbabbbab...;
$F_{3}^{\prime}=$ aaaabaaaaaabaaaaabaaaaaabaaaaaabaaaaaabaaaaaabaaaaaa
baaaaaabaaaaabaaaaaabaaaaaabaaaaaabaaaaaabaaaaaabaaaaaa
baaaaabaaaaaabaaaaaabaaaaaabaaaaaabaaaaaabaaaaaabaaaa ...;
$F_{4}^{\prime}=b a b a a b a b a b a b a b a b a b a b a b a a b a b a b a b a b a b a b a b a a b a b a b a b a b a b a b a$ babaababababababababaababababababababaababababababababa baababababababababaabababababababababaabababababab...;
$F_{5}^{\prime}=b b b b a b b b b b b b b b b b a b b b b b b b b b b a b b b b b b b b b b a b b b b b b b b b b a b b b b b b b b b b a b$
bbbbbbbbbbabbbbbbbbbbabbbbbbbbbbabbbbbbbbbbbabbbbbbbbbbabbbbbb
bbbbabbbbbbbbbbbabbbbbbbbbbabbbbbbbbbbabbbbbbbbbbabbbbbbbbbbbab
bbbbbbbbbabbbbbbbb...;
$F_{6}^{\prime}=$ aabaabaabaaabaabaaabaabaaabaabaabaaabaabaaabaabaaabaab
aabaaabaabaaabaabaaabaabaabaaabaabaaabaabaaabaabaabaaa
baabaaabaabaaabaabaabaaabaabaaabaabaaabaabaabaaabaab....
Now, we consider the relationship of $F_{\alpha, \beta}$ and F_{k}^{\prime}. We have the following theorem.
Theorem 3.3. $F_{k}^{\prime}=F_{\alpha_{k}, \beta_{k}}$, where $\beta_{k}=\beta+(k-1) \alpha(\bmod 1)$ and $\alpha_{k}=k \alpha(\bmod 1)$.
We first prove two lemmas. Let $F_{\alpha, \beta}=\mu_{\alpha}\left(x_{0}\right) \mu_{\alpha}\left(x_{1}\right) \cdots \mu_{\alpha}\left(x_{n}\right) \cdots$, where $x_{0}=\beta$ and $x_{n}=f\left(x_{n-1}\right)$ for $n \geqslant 1 . \quad I_{0}^{k}=\left[0, \alpha_{k}\right)$ and $I_{1}^{k}=\left[\alpha_{k}, 1\right)$ are two intervals on T. Let $\Delta_{k}\left(x_{i}\right)=\mu_{\alpha}\left(x_{i-k+1}\right) \mu_{\alpha}\left(x_{i-k+2}\right) \cdots \mu_{\alpha}\left(x_{i}\right)$ for $i \geqslant k-1$. It is clear that $\Delta_{k+t}\left(x_{i}\right)=$ $\Delta_{k}\left(x_{i-t}\right) \Delta_{t}\left(x_{i}\right)$.
Lemma 3.4. If $x_{i} \in I_{0}^{k}$ and $x_{j} \in I_{1}^{k}$, then $\Delta_{k}\left(x_{i}\right)$ and $\Delta_{k}\left(x_{j}\right)$ have different parities.
Proof. We apply induction on k. When $k=1$, the lemma is trivially satisfied. Now assume it is correct for $k=n$. Without loss of generality, we assume that $\Delta_{n}(x)$ is odd if $x \in I_{0}^{n}$; otherwise $\Delta_{n}(x)$ is even. Then we prove that the lemma is correct for $k=n+1$.

Suppose $\alpha>1 / 2$. Then $\alpha>\alpha_{2}$. There are three cases to be considered.
Case 1. $\alpha_{n+1}<\alpha_{2}$. Then we have $\alpha_{n}<\alpha$. If $x \in\left[0, \alpha_{n+1}\right)=I_{0}^{n+1}$, then $x-\alpha(\bmod 1) \in$ $\left[1-\alpha, \alpha_{n}\right) \subset I_{0}^{n}$. So $\Delta_{n}(x-\alpha(\bmod 1))$ is odd and $\Delta_{n+1}(x)=\Delta_{n}(x-\alpha(\bmod 1)) \Delta_{1}(x)$ is even. If $x \in\left[\alpha_{n+1}, \alpha\right)$, then $x-\alpha(\bmod 1) \in\left[\alpha_{n}, 1\right) \subset I_{1}^{n}$, which implies that $\Delta_{n}(x-\alpha(\bmod 1))$ is even and $\Delta_{n+1}(x)=\Delta_{n}(x-\alpha(\bmod 1)) \Delta_{1}(x)$ is odd. When $x \in[\alpha, 1)$, it is clear that $x-\alpha(\bmod 1) \in[0,1-\alpha)$, which leads that $\Delta_{n}(x-\alpha(\bmod 1))$ is odd and $\Delta_{1}(x)$ is even. So $\Delta_{n+1}(x)$ is odd. Then we have $\Delta_{n+1}(x)$ is odd if $x \in I_{1}^{n+1}$.

Case 2. $\alpha>\alpha_{n+1}>\alpha_{2}$. Then $\alpha<\alpha_{n}<1$ and we have

$$
x-\alpha(\bmod 1) \in \begin{cases}{\left[1-\alpha, \alpha_{n}\right)} & \text { if } x \in\left[0, \alpha_{n+1}\right) \\ {\left[\alpha_{n}, 1\right)} & \text { if } x \in\left[\alpha_{n+1}, \alpha\right) \\ {[0,1-\alpha)} & \text { if } x \in[\alpha, 1)\end{cases}
$$

from which it follows that $\Delta_{n+1}(x)$ is even if $x \in I_{0}^{n+1}$; otherwise $\Delta_{n+1}(x)$ is odd.
Case 3. $\alpha_{n+1}>\alpha$. Then have $0<\alpha_{n}<1-\alpha$ and

$$
x-\alpha(\bmod 1) \in \begin{cases}{[1-\alpha, 1)} & \text { if } \quad x \in[0, \alpha) \\ {\left[0, \alpha_{n}\right)} & \text { if } \quad x \in\left[\alpha, \alpha_{n}\right) \\ {\left[\alpha_{n}, 1-\alpha\right)} & \text { if } \quad x \in\left[\alpha_{n+1}, 1\right)\end{cases}
$$

which implies that $\Delta_{n+1}(x)$ is odd if $x \in I_{0}^{n+1}$; otherwise $\Delta_{n+1}(x)$ is even. Then the lemma is correct for $\alpha>1 / 2$.

When $\alpha<1 / 2$, the proof is similar to the case of $\alpha>1 / 2$, we omit it.
The proof is complete.

Lemma 3.5. We have that x_{i} and x_{j} are in same interval of I_{0}^{k} and I_{1}^{k} if $\Delta_{k}\left(x_{i}\right)$ and $\Delta_{k}\left(x_{j}\right)$ have same parity; otherwise, x_{i} and x_{j} are in different intervals.

Proof. From lemma 3.4, it is not difficult to prove that $\Delta_{k}\left(x_{i}\right)$ and $\Delta_{k}\left(x_{j}\right)$ have same parities if and only if x_{i} and x_{j} are in the same interval, which implies, by reduction to absurdity, that x_{i} and x_{j} are in different intervals if $\Delta_{k}\left(x_{i}\right)$ and $\Delta_{k}\left(x_{j}\right)$ have different parity. The proof is complete.

Proof of theorem 3.3. Let $\beta_{k}=x_{0}+(k-1) \alpha(\bmod 1)$. Then we have $F_{\alpha_{k}, \beta_{k}}=$ $\mu_{\alpha_{k}}\left(x_{k-1}\right) \mu_{\alpha_{k}}\left(x_{2 k-1}\right) \cdots \mu_{\alpha_{k}}\left(x_{n k-1}\right) \cdots$. From lemmas 3.4 and 3.5, we conclude that $F_{k}^{\prime}=$ $F_{\alpha_{k}, \beta_{k}}$.

Remark 3.6. There is much current research on discrete one-dimensional Schrödinger operators in $\ell^{2}(\mathbb{Z})$ with Sturmian potentials, namely,

$$
\begin{equation*}
\left(H_{\lambda, \alpha, \beta} u\right)(n)=u(n+1)+u(n-1)+\lambda F_{\alpha, \beta} u(n), \tag{3}
\end{equation*}
$$

where $\alpha \in(0,1)$ is irrational, $\beta \in[0,1)$ and $\lambda \neq 0$, along with the corresponding difference equation

$$
\begin{equation*}
H_{\lambda, \alpha, \beta} u=E u . \tag{4}
\end{equation*}
$$

The operator family (3) describes a standard one-dimensional quasicrystal model [20, 24] and has been studied in many papers $[1,2,6-9,15,17,18,23]$. From (3) it is seen that different Sturmian sequences determine different Schrödinger operators. Therefore, to know the relationship of the structures of quasicrystals described by Schrödinger operators it is essential for us to know the relationship of different Sturmian sequences. From theorem 3.2 we know that by a Sturmian sequence $F_{\alpha, \beta}$ we can construct a series of Sturmian sequences $F_{\alpha_{k}, \beta_{k}}$ where k is a positive integer and α_{k}, β_{k} are given in theorem 3.3. Moreover, following the construction process given in sections 2 and 3 , by $F_{\alpha, \beta}$ we can write the sequence $F_{\alpha_{k}, \beta_{k}}$ term by term. Hence, from $H_{\lambda, \alpha, \beta} u$ we can immediately obtain $H_{\lambda, \alpha_{k}, \beta_{k}} u$.

4. Conclusion

In this paper, we use a Sturmian sequence to form a series of sequences with higher language complexity, by which we then construct other Sturmian sequences. This progress answers a question: a sequence with higher language complexity can be reduced to a sequence with lower language complexity by some coarse-grained methods. These results can be applied to the study of quasicrystal structure as pointed in remark 3.6.

Acknowledgments

This work is partly supported by the National Natural Science Foundation of China (grant number: 10471016). We thank the anonymous referees for a very careful reading of a previous version and valuable comments.

References

[^0][3] Berstel J 1996 Recent results in Sturmian words Developments in Language Theory ed J Dassow and A Salomma (Singapore: World Scientific) pp 13-24
[4] Brezinski C 2001 Dynamical systems and sequence transformations J. Phys. A: Math. Gen. 34 10659-69
[5] Cao W T and Wen Z Y 2003 Some properties of the factors of Sturmian sequence Theo. Comput. Sci. 304 365-85
[6] Damanik D 2004 Aversion of Gordon's theorem for multi-dimensional Schrödinger operators Trans. Am. Math. Soc. 356 495-507
[7] Damanik D 2000 Gordon-type arguments in the spectral theory of one-dimensional quasicrystals Directions in Mathematical Quasicrystals (CRM Monographs, Series 13) (Providence, RI: American Mathematical Society) pp 277-305
[8] Damanik D 1998α-continuity properties of one-dimensional quasicrystals Commun. Math. Phys. 192 169-82
[9] Damanik D and Lenz D 1999 Uniform specral properties of one-dimensional quasicrystals: I. Absence of eigenvalues Commun. Math. Phys. 207 687-96
[10] Damanik D and Lenz D 2003 Powers in Sturmian sequence Eur. J. Comb. 24 377-90
[11] Damanif D and Lenz D 2002 The index of sturmian sequence Eur. J. Comb. 23 23-9
[12] de Bruijn N G 1981 Sequences of zeros and ones generated by special production rules Indag. Math. 43 27-37
[13] Pytheas Fogg N 2002 Substitutions in Dynamics, Arithemetics and Combinatorics (Berlin: Springer)
[14] Hao B L and Zheng W M 1998 Applied Symbolic Dynamics and Chaos (Singapore: World Scientific)
[15] Iochum B, Raymond L and Testard D 1992 Resistance of one-dimensional quasicrystals Physica A 187 353-68
[16] Iochum B and Testard D 1991 Power law growth for the resistance in the Fibonacci model J. Stat. Phys. 65 715-23
[17] Kaminaga M 1996 Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential Forum Math. 8 63-9
[18] Kohmoto M, Kadanoff Leo P and Tang C 1983 Localization problem in one dimension: mapping and escape Phys. Rev. Lett. 50 1870-2
[19] Krasikov I, Rodgers G J and Tripp C E 2004 Growing random sequences J. Phys. A: Math. Gen. 37 2365-70
[20] Luck J and Petritis D 1986 Phonon spectra in one-dimensional quasicrystals J. Stat. Phys. 42 289-310
[21] Lothaire M 2002 Combinatorics on Words (Cambridge: Cambridge University Press)
[22] Morse M and Hedlund G A 1940 Symbolic dynamics: II. Sturmian trajectories Am. J. Math. 62 1-42
[23] Ostlund S, Pandit R, Rand D, Schellnhuber H J and Siggia E D 1983 One-dimensional Schrödinger equation with an almost periodic potential Phys. Rev. Lett. 50 1873-6
[24] Senechal M 1995 Quasicrystals and Geometry (Cambridge: Cambridge University Press)
[25] Sütö A 1987 The spectrum of a quasiperiodic Schrödinger operator Commun. Math. Phys. 111 409-15
[26] Tan B and Wen Z Y 2003 Invertible substitutions and Sturmian sequences Eur. J. Comb. 24 983-1002
[27] Walters P 1975 Ergodic Theory (New York: Springer)
[28] Wolfram S 1984 Computation theory of the general quartic map Commun. Theor. Phys. 2243

[^0]: [1] Bellissard J, Iochum B, Scoppola E and Testard D 1989 Spectral properties of one-dimensional quasi-crystals Commun. Math. Phys. 125 527-43
 [2] Bellissard J, Iochum B and Testard D 1991 Continuity properties of the electronic spectrum of 1D quasicrystals Commun. Math. Phys. 141 353-80

